Transformational analysis in practice
Music-analytical studies on composers and musicians from around the world

Edited by
Bozhidar Chapkanov

Series in Music
Vernon Press
Table of contents

List of figures vii
List of tables xvii
List of examples xix
Acknowledgment xxi
Contributors xxiii
Preface xxix
Part I. Transformational analysis and the European Romanticism 1

Chapter 1 Neo-Riemannian analysis of Liszt’s Un Sospiro: A glance into the future 5
Antonio Grande
Conservatorio di Como, Italy

Chapter 2 The visual versatility of the Tonnetz: a neo-Riemannian methodology for Liszt’s late piano music 23
Bozhidar Chapkanov
Independent scholar

Chapter 3 Neo-Riemannian operations and enharmonic equivalents of consonant triads 47
Yosef Goldenberg
Jerusalem Academy of Music and Dance, Israel

Chapter 4 Models and transformations of voice exchanges as contextual inversions 75
Robert Peck
Louisiana State University, USA
Part II. Reaching beyond the mainstream European repertoires with transformational analysis

Chapter 5 Neo-Riemannian analysis in the music of Leopoldo Miguéz: first movement of the violin sonata op. 14 as a case study
Desirée Mayr
Bahia State University, Brazil

Chapter 6 Blended operations, flavored transformations: a neo-Riemannian case from the Turkish Five
Recep Gül
Istanbul Technical University, Turkey
Ozan Baysal
Istanbul Technical University, Turkey

Part III. Transformational analysis and post-tonal music

Chapter 7 A neo-Riemannian perspective on Anton Webern's Concerto for Nine instruments, op. 24
Stephen Brown
Northern Arizona University, USA
Edward Gollin
Williams College, USA

Chapter 8 Interval pairing in a serial context: Webern's Variations, op. 30
Stephen Brown
Northern Arizona University, USA

Chapter 9 Neo-Riemannian analysis, neoclassical music and hybridity
Yvonne Teo
Durham University, UK
Chapter 10 Non-triadic harmonic spaces and Fourier phase space 227
Jennifer Diane Harding
Independent scholar

Part IV. Transformational analysis, jazz and music production 245

Chapter 11 A transformational approach to superimposition in contemporary jazz voicings 249
Rich Pellegrin
University of Florida, USA

Chapter 12 Many paths at once: the interactive pitch space of “Pursuance” and improvisation in The John Coltrane Quartet 279
Timothy Clarkson
Sydney Conservatorium of Music, Australia

Chapter 13 An introduction to neo-Riemannian operations and their application in music production 301
Hussein Boon
University of Westminster, UK

A bibliography of studies in transformational theory 321

Index 331
List of figures

Figure 1.1.	Schema of *Un Sospiro*’s tonal structure.
Figure 1.2.	Pentatonic material: a) Motive a, mm. 3-5; b) Motive b, second thematic presentation, mm. 22-24.
Figure 1.3.	*Un Sospiro*, final measures, mm. 73 – 77.
Figure 1.4.	Liszt, *Un sospiro*, alternate ending, Leipzig 1901.
Figure 1.5.	Harmonic reduction of mm. 42-46. In a) the bass runs through a scale resembling an octatonic scale in all but one element. In b) the passage is rewritten with the correct octatonic scale (mm. 66-70).
Figure 1.6.	Scriabin, Op. 69 no. 1, relation between 6-34 and 6-35 (here limited to the first 4 measures). The circled notes are to be considered embellishments.
Figure 1.7.	The top shows the underlying model, the augmented triad. In the lower lines, three chords are derived by a semitonal shift of one single note (in black), with the others keeping unchanged (in white).
Figure 1.8.	Motive b deformation, mm. 62-66.
Figure 1.9.	Liszt, *Consolation* no. 4, finale.
Figure 1.10.	Below, pentatonic scale; above, transformation of b♭ by split, producing b♭/g8859 and c♭.
Figure 1.11.	Relations among octatonic-, pentatonic-, whole tone scale including D♭.
Figure 2.1.	The most common chord types of the music of the nineteenth century, as depicted on the *Tonnetz*.
Figure 2.2.	A chromatically smooth TSDT progression taken from Liszt’s *Romance oubliéé* (mm. 7-11).
Figure 2.3.	The chromatic introduction of *Valse oubliéé* no. 1, followed by a functional dominant progression (mm. 1-32).
Figure 2.4.	A chromatically decorated standing on the dominant (*Valse oubliéé* no. 1, mm. 89-106).
Figure 2.5.	The essential harmonic content and harmonic movement of *Trauervorspiel und Trauermarsch* (1885).
Figure 2.6.	The harmonic progression in Station IV (second half) of *Via Crucis* (1879).
Figure 2.7.	The chromatic progression gravitating around Fdim in measures 57-64 of *Bagatelle sans tonalité* (1885).
Figure 2.8. The chromatic progression gravitating around Fdim\(^7\) in measures 77-86 of *Bagatelle sans tonalité* (1885).

Figure 2.9a. The complete harmonic progression in measures 98-127 of *Polonaise I*.

Figure 2.9b. The harmonic progression in measures 98-127 of *Polonaise I*, first phase.

Figure 2.9c. The harmonic progression in measures 98-127 of *Polonaise I*, second phase.

Figure 3.1a. Wolf, *Italienisches Liederbuch*, song no. 15: *Mein Liebster ist so klein*. Introduction, annotated score.

Figure 3.1b. Wolf, *Italienisches Liederbuch*, song no. 15: *Mein Liebster ist so klein*. Introduction, analysis.

Figure 3.2. All enharmonic alternative to neo-Riemannian operations with semitonal motion.

Figure 3.3a. *Tonnetz* representation of the alternative to LP and Hex progressions from 047 spelled as 4/3.

Figure 3.3b. *Tonnetz* representation of the alternative to P, PL and Slide progressions from 047 spelled as 5/4.

Figure 3.3c. *Tonnetz* representation of the alternative to LP and Hex progressions from 037 spelled as 5/2.

Figure 3.3d. *Tonnetz* representation of the alternative to P, PL and Slide progressions from 037 spelled as 4/2.

Figure 3.4. Alternative to P from 037 as 5/#2–5/3: Beethoven Piano Trio Op. 70, No. 2/III, mm. 87–90.

Figure 3.5. Potential ♭7/4 [chord-inversion of 5/♭4] spelling as alternative to PL: Schubert, Piano Sonata D. 850 (Op. 53)/III, mm. 129–33 (=mm. 11–15 of the trio).

Figure 3.6. #5/4 [chord-inversion of 5/#2] spelling as alternative to PL between two minor triads: Bach, *Das Wohltemperiertes Klavier*, vol. 1, Fugue in C minor, BWV 847, mm. 28–29: actual music and potential realization of EECT as a true triad.

Figure 3.7. Slide progressions: a. Conflict between horizontal and vertical spelling: Tchaikovsky, Symphony No. 5/I, mm. 23–24; b. Abstract descending conformant slide; c. Ascending conformant slide: Haydn, Piano Sonata Hob.XVI:2/I, mm. 44–45.

Figure 3.8. ♭6/#2 [chord-inversion of #4/3/♭1] spelling as alternative to LP between two major triads: Hugo Wolf, *Songs by Various Poets*, No. 6: “Zur Ruh, Zur Ruh”, end.
Figure 3.9. ♭7/#3 [inversion of #4/♭3 spelling] as alternative to LPL or PLP understanding of Hexatonic pole progression from a minor-triad sound to a major-triad sound: Wagner, Das Rheingold, from Scene 4. 62

Figure 3.10. EECT created by upper-voices smooth voice-leading combined with leaping bass: Hindemith, Ludus Tonalis, interlude from Fugue no. 6 in E♭ to Fugue no. 7 in A♭, m. 9. 64

Figure 3.11. Motivic parallelism reinforces genuine-triad spelling: Rossini, Messe Solennelle. No. 14: O Salutaris, mm. 166–169. 65

Figure 3.12. Upper-voice influence on preferred spelling: Prokofiev, Romeo and Juliet (Piano Transcription), Op. 75. No. 4: The Young Juliet, m.2 and two alternatives. 66

Figure 3.13. EECT combined with motion across the enharmonic seam: Liszt, Années de pèlerinage, Year 1, piece no. 1: Chapelle de Guillaume Tell, mm. 17–20. 67

Figure 3.14. Smooth voice-leading suggests EECT, but motivic imitation rejects it: Brahms, Ein Deutsches Requiem/IV (vocal parts). 69

Figure 3.15. Internal prolongation as a local tonic despite function as EECT in the larger context: Schubert, Piano Trio No. 2, D. 929/IV, coda, mm. 753–777. 70

Figure 4.1a. A voice exchange in X. 76

Figure 4.1b. Neo-Hauptmannian interpretation of the P exchange. 76

Figure 4.2. The torus of ordered pitch-class dyads. 80

Figure 4.3a. Tristan Prelude, mm. 2-3. 81

Figure 4.3b. Tristan Prelude, mm. 6-7. 81

Figure 4.4. Tristan Prelude, mm. 10-11. 82

Figure 4.5. Exchanges under X₀₉,₃. 86

Figure 4.6. X₀₉,₃ examples on the torus of ordered pitch-class dyads. 86

Figure 4.7. Neo-Hauptmannian interpretation of the L exchange. 87

Figure 4.8. Tristan Prelude, mm. 1-2 (after Rothstein, 1995). 88

Figure 4.9. Exchanges under X₀₉,₅. 88

Figure 4.10. Neo-Hauptmannian interpretation of the –GW exchange. 89

Figure 4.11. X₀₉,₅ examples on the torus of ordered pitch-class dyads. 89

Figure 4.12. Tristan Prelude, m. 20. 90

Figure 4.13. Exchanges under X₀₈,₁. 91

Figure 4.14. X₀₈,₁ examples on the torus of ordered pitch-class dyads. 91
List of figures

Figure 4.15. Transformational network of voice exchanges in the Tristan Prelude, mm. 1-20. 93

Figure 5.1. Hexatonic cycle H_0 and octatonic cycle O_0 (according to representations and nomenclatures proposed by Richard Cohn, 1998). Capital letters indicate major chords/keys, and lowercase letters indicate minor triads/keys. Enharmonic equivalence is assumed. 104

Figure 5.2. Geometrical representation formed by the four hexatonic cycles and the octatonic cycle O_0. 105

Figure 5.3. O_0 and H_0 connected by the common edge C-c. Some possible third and non-third relations are exemplified. 106

Figure 5.4. Main tonal relations in Brahms's violin sonata op. 78, first movement, considering the exposition (left) and recapitulation (right) sections. 106

Figure 5.5. Main tonal relations in Miguéz's violin sonata op. 14 first movement, considering the exposition (left) and recapitulation (right) sections. 108

Figure 5.6. Opening measures of Miguéz's violin sonata op. 14, first movement. 109

Figure 5.7. Main tonal relations in Miguéz's violin sonata op. 14, second movement. 111

Figure 5.8. Main tonal relations in Miguéz's violin sonata op. 14, third movement. 112

Figure 5.9. Main tonal relations in Miguéz's violin sonata op. 14, fourth movement. 114

Figure 5.10. Miguéz – Violin sonata op. 14/1st movement, mm. 225-234. 115

Figure 5.11. Harmonic reduction of fig. 5.10. 116

Figure 5.12. Voice-leading analysis of fig. 5.11 (left). Abstracted version of it, informing the presence of omnibus progressions (darker lines). 116

Figure 6.1. “La gamme fondamentale turque” in Yekta's monograph (1922, 2987). 121

Figure 6.2. Pitch set models from Saygun's Töresel Musiki. 126

Figure 6.3. RCent for [D, E, A]. 129

Figure 6.4. RCent for [E, G, A]. 129

Figure 6.5. Intervalic transformations within [A, D, E]. 132

Figure 6.6. Contextual chromatic transpositions for [A, D, E]. 133

Figure 6.7. Combining RCent and CT. 136

Figure 6.8. Interval rotation. 137

Figure 6.9. Transformational matrix for [A, D, E]. 138
List of figures

Figure 6.10. Transformational matrix for [E, G, A]. 138
Figure 6.11. Transformational matrix for [B, D, A]. 140
Figure 6.12. Ulvi Cemal Erkin – 5 Damla No.2, Interval Rotation. 140
Figure 7.1. The equal-tempered (014) Tonnetz. 152
Figure 7.2. Enchained members of sc (014) in the melody of the antecedent, mm. 1–11. 152
Figure 7.3. (a) The P_{11} and R_{11} rows, showing the discrete [014] trichords in boxes, and ordered intervals spanning tones in order positions 0, 3, 6, and 9. (b) Hexachordal invariance in R_9 and I_4 row forms. 154
Figure 7.4. Row forms in the antecedent, mm. 1-11. 156
Figure 7.5a. The R_9 pathway. 157
Figure 7.5b. The R_{11} pathway. 157
Figure 7.5c. The R_{11} pathway. 158
Figure 7.6. Row forms in mm. 1-28. 159
Figure 7.7. The consequent pathway, mm. 11–28. 160
Figure 7.8. The R_{11} pathway. 157
Figure 7.9. The R_9 pathway. 157
Figure 7.10. The R_{11} pathway. 157
Figure 7.11. The R_{11} pathway. 158
Figure 8.1. Webern: Five Pieces for String Quartet, Op. 5, No. 3, mm. 5–8. 167
Figure 8.2. Webern: Concerto for Nine Instruments, Op. 24, ii, mm. 1–7. 167
Figure 8.3. Some examples of set-class limitation in Webern's twelve-tone rows. 168
Figure 8.4. Some examples of interval-class limitation in Webern's rows. 169
Figure 8.5. Webern: Variations Op. 30, opening row (= P_9). 170
Figure 8.6. Matrix of Webern's Op. 30 row, with annotations indicating various row properties. 171
Figure 8.7. a) The discrete trichords and tetrachords in the row of Op. 30. b) Another hypothetical row constructed from ic1 and ic3. 172
Figure 8.8. Variations, Op. 30, Theme, first half (mm. 1–10). 173
Figure 8.9. Theme, Units 9 and 11 (mm. 13–14 and 17–18). 174
Figure 8.10. The row's two tetrachord types depicted as regions in an ic1/ic3 Tonnetz: they assume different shapes and therefore cannot be related by flipping or rotation. 175
Figure 8.11. The row's tetrachords can be related by the “shear” transformation S. 176
Figure 8.12. Variation 1, first ten measures. 177
Figure 8.13. The shear transformation relates the vertical chords of the accompaniment layer, with the bass note of
each chord (shown circled) always in the same position within its network.

Figure 8.14. Variation 1: a) clarinet phrase; b) violin-and-cello phrase.

Figure 8.15. Clarinet and violin-and-cello phrases interpreted as regions of an ic1/ic3 Tonnetz.

Figure 8.16. Variation 2, first four measures (mm. 56–59).

Figure 8.17. The shear transformation relates the tetrachords within both layers, now maintaining the relative positions of all the notes in each chord (i.e., preserving the exact voicings of all the chords).

Figure 8.18. Variation 3: a quick succession of melodic trichords.

Figure 8.19. Flips in an ic1/ic3 Tonnetz relating each trichord to the next.

Figure 8.20. A brief excerpt near the beginning of Variation 3.

Figure 8.21. The trichords can be related by a) flipping within an ic1/ic3 Tonnetz or b) 90-degree rotation.

Figure 8.22. Variation 4, opening. Ovals enclose vertical ic1 dyads formed between the same order positions of different row forms; boxes enclose [0134] tetrachords formed by pairing ic3 dyads from different row forms.

Figure 8.23. The two chord progressions of Variation 5.

Figure 8.24. The chords of Variation 5 depicted as progressing through an ic1/ic3 Tonnetz.

Figure 8.25. Variation 6, opening. In the third phrase, boxes enclose vertical [013] trichords and ovals enclose melodic [014] trichords.

Figure 8.26. The first two chords of Variation 6 relate by a diagonal flip in an ic1/ic3 Tonnetz (i.e., interval exchange).

Figure 8.27. The second phrase of Variation 6 depicted in an ic1/ic3 Tonnetz. The repeated notes G and B♭ (shown boxed) form the axis of symmetry.

Figure 8.28. Variation 6, phrase 3: a flip in an ic1/ic3 Tonnetz relates the flute's melodic gesture C–C♯–E to the “cadential chord” {C♯, E♭, E}.

Figure 9.1. Modified Tonnetz.

Figure 9.2. Transforming [2X7] into [580].

Figure 9.3. Procedure for harmonic Reduction.

Figure 9.4. Segmentation and Calculation, Vaughan Williams, mm. 201–220 and mm. 129–144.
Figure 9.5. VL Reduction and Segmentation, Vaughan Williams, mm. 201–220.

Figure 9.6. AVL and VL data, Vaughan Williams, Violin Concerto in D minor, mm. 201-220.

Figure 9.7. AVL and VL data, Vaughan Williams, Violin Concerto in D minor, mm. 129–144.

Figure 9.8. Segmentation and calculation, Copland, mm. 41–55 and mm. 70–85.

Figure 9.9. VL reduction and segmentation, Copland, mm. 41–45.

Figure 9.10. AVL and VL data, Copland, mm. 41–55.

Figure 9.11. AVL and VL data, Copland, *Passacaglia*, mm. 70–83.

Figure 10.1. Tonnetz showing the generating interval cycles.

Figure 10.2. Six Fourier components.

Figure 10.3. The Tonnetz in $\phi_{3/5}$ space, with several triads and a dominant-seventh chord plotted.

Figure 10.4. Sonorities from Olivier Messiaen, *Theme and Variations for Violin and Piano*, mm. 15–20.

Figure 10.5. Full sonorities and embedded triads from the *Theme*, mm. 15–20 plotted in $\phi_{3/5}$ space.

Figure 10.6. Full sonorities and embedded triads from the *Theme*, mm. 15–20 plotted in $\phi_{1/4}$ space.

Figure 10.7. Full sonorities and embedded triads from the *Theme*, mm. 15–20 plotted in $\phi_{3/4}$ space.

Figure 10.8. Sets from Thomas Adès, *The Four Quarters*, mvt. 3, “Days,” mm. 35–69.

Figure 10.9. Sets from Thomas Adès, *The Four Quarters*, mvt. 3, “Days”, mm. 35–69 plotted in $\phi_{1/4}$ space.

Figure 10.10. Sets from Thomas Adès, *The Four Quarters*, mvt. 3, “Days,” mm. 35–69 plotted in $\phi_{3/4}$ space.

Figure 10.11. Voicings for four different harmonies employing major-third, major-seventh, and major-ninth shapes.

Figure 11.1. Parallel/leading-tone (PL) and leading-tone/parallel (LP) cycles drawn from the Northern hexatonic
system. Voice-leading sums to zero. Accidentals apply only to individual chords.

Figure 11.5. The triads from Figure 11.4 may be used as (partial) voicings for at least twenty-one different harmonies (Fig. 11.3), twelve of which are shown here in each column. Any chord in any column may progress to any chord in any other column using zero-sum voice-leading of PL/LP cycles.

Figure 11.6. Zero-sum PL and LP cycles from the Northern hexatonic system used as right-hand voicings for the same functionally-tonal progression. Accidentals apply only to individual chords. Spelling of triads retained throughout to show PL/LP cycles.

Figure 11.7. A Tonnetz showing several harmonic possibilities for each triad.

Figure 11.8. A master sequence of all seventh chords which stack major and minor thirds, arranged in order of sharps and flats, with -1 voice-leading throughout. Accidentals apply only to individual chords. The two chords in parentheses are mutually exclusive in terms of the -1 voice-leading.

Figure 11.9. The six two-chord, -2 voice-leading sequences, with one of many possible derivative sequences shown on the right. Accidentals apply only to individual chords.

Figure 11.10. The M9 (drop2&4) and m9 (drop2&4) shapes used as voicings for many different harmonies. Alternating between the two shapes (upper staff) creates a chromatically-descending P/P’ sequence (until the G7 chord). The roots cycle diatonically through the D3(D5/A3) sequence used chromatically in Coltrane changes and in “Giant Steps” (again until the G7 chord). Each voicing presented is distinct – there are no duplications.

Figure 11.11. Above: three chords from Figure 11.10, showing the P and P’ operations and their attendant common tones with ties. The drop 2&4 voicings have been restored to stacks of thirds for simplicity. The -3/-2 cardinality of the voicings is now 5. Below: the three ninth-chord shapes plotted as trapezoids on an extended diatonic portion of Waters and Williams’s Tonnetz, illustrating the P and P’ operations as reflections (2010, 7.1-7.3).
Figure 11.12. Ninth chords containing 027 and 016 trichords. Accidentals apply only to individual chords. 267

Figure 11.13. (a) One of three ninth chords which contains an 016 trichord. (b) The pitch-classes of the chord at (a) rearranged so that the 016 trichord occurs in its most common shape. (c) This idiomatic shape from (b) is commonly used as a voicing for eight different octatonic harmonies (octatonic alterations omitted for simplicity). 269

Figure 11.14. (a) One of four ninth chords which contains an 027 trichord. (b) The pitch-classes of the chord at (a) rearranged so that the 027 trichord occurs consecutively as a stack of fourths. (c) This shape from (b) may be used as a voicing for eight different harmonies. 270

Figure 11.15. In the top stave, a cantus firmus of left-hand shapes which progress via transformations from Waters and Williams’s Example 10. Parsimonious voice-leading sums (PVLS) are provided for each transformation. Beneath the top stave are five contrasting counterpoints against the cantus firmus, creating new harmonic progressions. 273

Figure 11.16. Waters and Williams (2010), Example 10: diatonic and acoustic harmonies. 275

Figure 12.1. A sample Tonnetz representation of the overlapping macroharmonic regions of (a) B♭ Dorian-minor with D-major, and (b) B♭ Dorian-minor with F♯-major. Each trapezoid represents one location of a diatonic region in a continuous Tonnetz. Overlap between regions displays as black. 12(c) shows the F-minor pentatonic scale configured as a subset of a diatonic region. 285

Figure 12.2. Coltrane’s solo on “Pursuance” – chorus 1, measure 9 to chorus 2, measure 1. Tyner’s harmonic motion oscillates around Coltrane’s phrases in F-minor pentatonic. 289

Figure 12.3. Coltrane’s solo on “Pursuance”, chorus 13, measures 3-5. 296

Figure 12.4. Coltrane’s solo on “Pursuance”, chorus 14, measures 4-6. 296
Figure 12.5. Coltrane's solo on “Pursuance”, chorus 13 measure 11 to chorus 14 measure 2. 297

Figure 13.1. Harmonic reduction of Old Man by Neil Young (neilyoungchannel, 2014). 306

Figure 13.2. Bridging section. 307

Figure 13.3a. Lemur Tonnetz App. 310

Figure 13.3b. Lemur Tonnetz App illustrating chord collections around the common tone A. 311

Figure 13.4a. Example sustained chord progression. 312

Figure 13.4b. Example rhythm/gate pattern. 312

Figure 13.4c. Example rhythm/gate pattern applied to chord progression (see video Multi Gate Pattern 1). 312

Figure 13.4d. Example score output using multi-gate approach. 313

Figure 13.5. Automation example animating an oscillator simulating the L operation. 314
List of tables

Table 3.1. Spelled EECT, their fifth-strings and spans, after Hook (2011, p. 87). Legend: X=047, Y=037, + = spelling in high use; _ = spelling in low use; ? = doubtful spelling; ! = impossible spelling. 52

Table 3.2. Voice-leading in the progressions from Figure 3.2. 55

Table 5.1. Neo-Riemannian operations connecting main tonal regions in the exposition and recapitulation of the first movement of Brahms’s op. 78. Gray cells refer to non-third relations. 107

Table 5.2. Neo-Riemannian operations connecting main tonal regions in the exposition and recapitulation of the first movement of Miguéz’s op. 14. Gray shades indicate non-third relations. 109

Table 5.3. Neo-Riemannian operations connecting main tonal regions in the second movement of Miguéz’s op. 14. Gray shades indicate non-third relations. 112

Table 5.4. Neo-Riemannian operations connecting main tonal regions in the third movement of Miguéz’s op. 14. Gray cells indicate non-third relations. 113

Table 5.5. Neo-Riemannian operations connecting main tonal regions in the third movement of Miguéz’s op. 14. Gray cells indicate non-third relations. 114

Table 6.1. Tuning Systems of Bağlama as demonstrated in Arsunar (1937, p. 24). 125

Table 9.1. Tracking the “close” movement from G to F minor. 204

Table 9.2. AVL movement in mm. 201–209. 208

Table 9.3. Statistical data, Vaughan Williams, *Violin Concerto*, mm. 201–220. 209

Table 9.4. Individual VL movement data, Vaughan Williams, *Violin Concerto*, mm. 201–220. 210

Table 9.5. BIP data, Vaughan Williams, *Violin Concerto*, mm. 201–220. 210

Table 9.6. Statistical data, Copland, *Passacaglia*, mm. 41–53. 218

Table 9.7. Individual VL movement data, Copland, *Passacaglia*, mm. 41–53. 218

Table 9.8. BIP data, Copland, *Passacaglia*, mm. 41–53. 219
Table 11.1. Parameters for the cantus firmus of left-hand voicings in Figure 11.15 (top stave), and instructions for how to plot the progression on Example 10 of Waters and Williams (2010). 276

Table 13.1a. Six NROs found in popular music usage. 303
Table 13.1b. Six NROs as song starting position. 303
Table 13.2a. *Roots of Coincidence* verse structure. 307
Table 13.2b. *Roots of Coincidence* guitar solo structure. 308
Table 13.3. NROs applied to chords in diatonic positions ii and IV as song starting position. 309
Table 13.4. Illustration of generative approach using Ableton's follow actions. 315
List of examples

Example 2.1. Measures 7-11 of *Romance oubliéé* (main theme). 27

Example 2.2. The opening of *Valse oubliéé* no. 1. 28

Example 2.3. Measures 89-106 of *Valse oubliéé* no. 1. 30

Example 2.4. Station IV of *Via Crucis* (second half), presented with rhythmic reductions. 34

Example 2.5. Harmonic reduction of measures 57-86 of *Bagatelle sans tonalité*. 36

Example 2.6. A harmonic reduction of measures 98-127 of *Polonaise I* (1875) based on the oratorio *St Stanislas*. 41

Example 6.1a. Cemal Reşit Rey “Scene Turques: 1-Yuruk Zeibek Havvası”, mm. 1-6. 123

Example 6.1b. Cemal Reşit Rey “Scene Turques: 2-Aghir Zeibek Havvası”, mm. 1-2. 123

Example 6.1c. Cemal Reşit Rey “Scene Turques: 5-Yuruk Zeibek Havvası”, mm. 1-8. 124

Example 6.2. Alnar, 8 Pieces for Piano No.1 “Şu Yamaçta”, mm. 1-4. 130

Example 6.3. RCent transformation in Alnar’s “Şu yamaçta”, mm. 1-4. 131

Example 6.4. Saygun, Sonatine op. 15 – Mov. 3. Horon, first theme, mm. 6-10. 134

Example 6.5. Contextual chromatic transposition in Alnar’s “Şu yamaçta”, mm. 3-4. 135

Example 6.6. Ulvi Cemal Erkin – 5 Damla, No.2, mm. 1-16. 139

Example 7.1. Webern, Concerto for Nine Instruments, Op. 24, ii, mm. 1–28. 151
Acknowledgment

It is a great pleasure to witness first-hand the completion of this exciting and, in my humble opinion, much-wanted book in our discipline. While specializing in neo-Riemannian analysis since 2017 and delving into a large body of theoretical and analytical literature, I have discovered that, despite the ever-bigger proliferation of dissertations, journal articles, dedicated conference papers and book chapters, which use transformational theory, there have not yet been many anthologies similar to the one that we present today. Therefore, I would like to thank Vernon Press for giving me the opportunity to embark on this project and take such a great responsibility at an early stage of my academic career: to oversee and control the whole process, from the initial call for chapters, to the final completion of the book manuscript. A special thank you to Blanca Caro Duran for guiding me step-by-step and always providing me with prompt and detailed responses when I was asking numerous questions about the editorial work and manuscript preparation.

My proficiency with music theory and analysis, and more specifically with transformational theories is indebted to a handful of academic mentors and colleagues, whose advice and guidance can be related to this project both directly and indirectly. To Kenneth Smith, for sharing a number of his invaluable insights into transformational theory throughout the last five years and, more recently, his opinions at an early conceptual stage of this book. To Shay Loya, for being the best PhD-level supervisor who I could possibly hope for, while also giving his viewpoint on the viability of this project. To Antonio Grande, who kindly introduced me to his own neo-Riemannian research several years ago, then encouraged me to publish on the topic in the Italian journal for music theory and analysis, finally, helping me prepare the book proposal and the preface that introduces the book on the following pages. A warm thank you also extends to Edward Gollin for his opinions on why this book is much needed and for his perspective on the current state of this subfield.

I am so grateful to all the co-authors who expressed their interest in this project and provided me with a plethora of fascinating analytical studies, covering a diverse range of repertoires and approaches – quite close to how I was initially envisioning it! Some of them I have already had the pleasure of knowing and I hope that we can keep meeting and sharing ideas on a regular basis. To the ones I have not yet met in person – I will be looking forward to seeing you at a conference or another event in the near future!
A special thanks to Donyawan Kongchatree for helping me with designing the book cover and last, but not least, to my wonderful partner Xintong Jia – for inspiring me every day with her discipline and showing me what it is to strive for excellence in academic research.

The Editor
Contributors

Antonio Grande is Professor of Music Analysis at the Conservatory of Como (Italy) and in postgraduate courses at the University of Calabria. He is currently Head Editor of the International Journal of Musical Analysis and Theory RATM. He has written numerous papers for analytical journals as “Analisi” (Ricordi), “Spectrum” (Curci, RATM (Lim), “Quaderni dell’Istituto Liszt”, “De Musica” (University of Milan). One of his works, Temporal Perspectives in Scriabin's Late Music is included in the recent volume *Demystifying Scriabin*, edited by Vasilis Kallis & Kenneth Smith, Boydell & Brewer, 2022. He also published *Una rete di ascolti. Viaggio nell’universo musicale neo-riemanniano* (Rome, 2020), *Lezioni sulla Forma Sonata* (Rome 2015), and *Il moto e la quiete. Dinamica delle strutture musicali in età tonale* (Rome 2011).

Dr. **Bozhidar Chapkanov** is a pianist, composer and researcher who specializes in the field of neo-Riemannian theory and analysis. His doctoral thesis titled *“Harmony and Tonality in Liszt's Late Piano Music – Functional and Transformational Analytical Perspectives”* develops a hybrid methodology for the transitional repertoires of the late nineteenth century, utilizing the strengths of both Hugo Riemann's *Funktionstheorie* and the innovative approaches of neo-Riemannian analysis. Commencing his doctoral studies in 2017 at City, University of London, and completing in 2022, Bozhidar Chapkanov has enjoyed frequent appearances at international conferences, presenting his findings in Italy, France, Portugal, Croatia and the UK. His publication in the Italian *Rivista di analisi e teoria musicale* (RATM) titled *“An Analytical Study into Weitzmann Regions in the late Piano Works of Franz Liszt”* shows the importance of the augmented triad for Liszt and claims that a visually enhanced neo-Riemannian methodology can put enough emphasis on this sonority and demonstrate that it was a generator of musical syntax for the composer. Having similar motivations as a lead editor for the current book, Dr. Chapkanov believes that transformational analysis can open our eyes and ears to many harmonic details in the music of the nineteenth and twentieth centuries, which may remain obscure in other modes of analysis.

Dr. **Yosef Goldenberg** is a music theorist and a scholar of Israeli music. He teaches at the Jerusalem Academy of Music and Dance, where he also serves as head librarian. Dr. Goldenberg is the author of *Prolongation of Seventh Chords in Tonal Music* (Edwin Mellen Press, 2008) and co-editor of SMT

Robert Peck is Professor of Music Theory at Louisiana State University. He is a prominent scholar in mathematics and music studies, transformational theory, and post-tonal music analysis. A founder of the *Journal of Mathematics and Music*, he served as its Co-Editor-in-Chief from 2007 to 2012. He is co-editor of the book *Mathematical Music Theory: Algebraic, Geometric, Combinatorial, Topological and Applied Approaches to Understanding Musical Phenomena* (World Scientific, 2018). His research appears in *Journal of Music Theory, Perspectives of New Music, Music Theory Online, Journal of Mathematics and Music, MusMat: The Brazilian Journal of Music and Mathematics, Intégral*, and other publications. He has presented his research at numerous conferences in the United States, Germany, France, England, Canada, Mexico, and Brazil. He has co-organized seven special sessions on mathematics and music for the American Mathematical Society. He holds a Doctor of Music degree from the Indiana University Jacobs School of Music.

Desirée Mayr is a Professor of Music at Bahia State University and a violinist in the Brazilian Symphony Orchestra. She studied at Durham University on a CAPES scholarship and obtained her doctorate from the Federal University of Rio de Janeiro, where she subsequently taught analysis of Brazilian Romantic works as a postdoctoral fellow. Her research covers the work of the Brazilian nineteenth-century composer Leopoldo Miguéz. She is currently a member of a research group working on Latin American sonatinas that published its first volume in 2022. Dr Mayr has presented her research at international conferences including the International Musicology Society and the Society for Music Theory; she was the 2022 recipient of the IMS and SMT Travel Grants. She serves as co-chair of the SMT’s Global Interculturalism and Musical Peripheries interest group and publishes her works in journals such as *Music Theory and Analysis (MTA)*.

Dr. **Recep Gül** holds a doctorate degree in music composition from the University of Michigan and is currently an assistant professor of composition at İstanbul Technical University(11,10),(990,992). He studied composition with Bright Sheng, Evan Chambers, Kamran İnce, Paul Schoenfield and Pieter Snapper. His music has been performed in the USA, Italy, Germany, Turkey and Switzerland. He was
awarded the prestigious Rackham predoctoral fellowship and Institute for the Humanities - Graduate Student Fellowship at the University of Michigan. Recent awards and honors included second prize in the Choral Composition Competition by the Culture of Ministry in 2018, second prize for piano quartet in Süreyya Opera national composition competition in 2019 and first prize for Cello Concerto in Eczacibaşı National Competition in 2021. He is also the musical director of the award-winning a cappella ensemble A Cappella Boğaziçi and head of the music commission in the Choir Culture Foundation in Istanbul.

Ozan Baysal is a faculty member at the Department of Musicology, Istanbul Technical University. His research areas are history of music theory, analysis and popular music. His output on history of music theory examines Turkish makam music treatises (edvâr), and the influences of early Greek music theory within the foundations of the Turkish makam theoretical tradition. In terms of music analysis Baysal has proposed two prolongational models for analyzing makam-based traditional Turkish music: Cyclical Analysis Model, and Time-Makam Analysis Model. His recent works investigate the poetics of makam through the Ayin compositions within the Mevlevi tradition while bringing together structural, hermeneutic and intertextual approaches to analysis, and were presented in various international meetings including Musica Analitica (Porto 2019), Analytical Approaches to World Music (AAWM 2014 & 2021) and the Annual Meeting of American Musicological Society (AMS 2021).

Edward Gollin is Professor of Music Theory at Williams College. He has published numerous articles and book chapters on transformational theory, neo-Riemannian theory, and on the music of Béla Bartók. He was a co-editor of the Oxford Handbook of Neo-Riemannian Theories, which received a Special Citation of Merit from the Society for Music Theory. He received his Ph.D. in music theory from Harvard University, and a Master of Arts degree in theory from Queens College, C.U.N.Y.

Dr. Stephen Brown is Professor of Music Theory at Northern Arizona University, where he also coordinates the academic area within the School of Music. Dr. Brown earned his BA in Music and History from Harvard in 1991 and his Ph.D. in Music Theory from Yale in 1999, studying under Allen Forte. Before coming to NAU, he taught at the University of Connecticut (Assistant Professor, 2000-2001) and the Oberlin Conservatory (Assistant Professor, 2001-2007; promoted to Associate Professor with tenure, 2007). Dr. Brown has done research in post-tonal theory and analysis, transformational theory, and
the music of Shostakovich. His articles have appeared in Music Theory Spectrum, Music Analysis, the Journal of Music Theory, and Music Theory Online, among other journals. He has served on the editorial boards of Music Theory Online and SMT-V, is a past president of the Rocky Mountain Society for Music Theory, and was on the program committee for the annual conference of the Society for Music Theory (AMS-SEM-SMT 2022).

Yvonne Teo holds a Ph.D. from Durham University, where her funded research sought to develop a hybrid theoretical model, amalgamating several well-known theories to early twentieth-century works. Her work also sought to bridge the divide between performance and music analysis through an investigation into music perception and cognition. She also holds a Master's in Music in Musicology with a First from the University of Melbourne under the Australian Postgraduate Award scheme, a Bachelor's of Music with a First in Musicology, a Graduate Diploma in Education from the University of Queensland, and a Diploma in Piano Performance from ABRSM.

Jennifer Harding is a music theorist, educator, and communicator based in Western Massachusetts. Her research seeks to answer questions about harmonic relationships in both notated and recorded music using mathematical and computational methods, with an emphasis on the discrete Fourier transform. She has presented her work in both national and international venues, with some of her research appearing in the proceedings of the Music Encoding Conference. Her interests also include issues of visual representations of music and is the co-founder of the Society for Music Theory's Music Notation and Visualization Interest Group. She has taught music theory at the University of Massachusetts Amherst, University of Florida, and Florida State University.

Rich Pellegrin is Assistant Professor of Music Theory at the University of Florida and Affiliate Assistant Professor at the Center for Arts, Migration, and Entrepreneurship. His work has been published in Jazz Perspectives, Engaging Students, the Journal of Schenkerian Studies, The Conversation, and in volumes by Cambridge Scholars Publishing and KFU Publishing House. Pellegrin recently served as Guest Editor of a special issue of Jazz Perspectives devoted to John Coltrane. As a jazz pianist, composer, and bandleader, he has released four albums on Origin Records’ OA2 label. His recent record *Down* was reviewed in the leading jazz periodical, Downbeat Magazine, which described “moments of absolute bliss” and wrote: “Pellegrin does as the great pianists do, supplying encouragement and graceful touches in the background, before diving forward to take solos that are by turns florid and
cracked, balletic and modern.” He is currently working on a multi-volume solo project.

Tim Clarkson teaches in the jazz performance and musicology departments of the Sydney Conservatorium of Music. He is a jazz saxophonist, composer, bandleader residing in Sydney, soon to begin his final year of DMA candidature at the Sydney Conservatorium. His research explores theory and practice of tonal transformation and superimposition in modern jazz improvisation, and performer agency in group creative processes.

Previous research during his Master’s Degree analyzed the polytonal improvisation techniques of American saxophonist Mark Turner, specifically chromatic third relationships through octatonic and hexatonic collections. Tim has received several grants for overseas research and study, including the Australia Council for the Arts Skills Development Grant and JB Seed Fund Grant.

A highly creative and unique voice on saxophone, his albums feature regularly on national radio as leader or sideman and has performed with George Benson, The Temptations, Grammy Award winner Elio Villafranca and recorded in New York with drummer Dan Weiss, bassist Hans Glawischnig and pianist Barney McAll. In Australia, he performs and tours with the Tim Clarkson Trio, Dan Barnett Big Band, Dave Panichi Orchestra and multi ARIA award winners The MARA! Band.

Hussein Boon is a multi-instrumentalist, songwriter, composer, music educator and YouTube video maker. He has taught for many institutions, including Goldsmiths, City Lit, CM and IoE and organizations, the Prince’s Trust, BBC, and music and arts services. He has worked for artists including Beats International, Eusebe, DeLa Soul and many others. He is an Independent artist, live coder, improvising modular synthesist and London Ableton Live User Group organizer. His recent published works include a chapter on Shift Registers in semi-improvised writing and performance contexts and an article illustrating how to use Digital Audio Workstations as design tools to develop unconventional production and composition approaches.
Preface

Since the 1990s, transformational music theory has slowly but steadily been gaining momentum as an important branch of the theoretical subfields, which aim to explain why music is harmonically organized the way it is. It arose with the attempts of a handful of theorists (predominantly American) to more fully explain the harmonic complexity of the highly chromatic music composed from around the middle of the nineteenth century onwards. This was in response to traditional tonal theories (such as Schenkerian or Roman numeral) and their difficulties in addressing the ever-larger tonal freedom in the styles of composers such as Wagner, Liszt, Franck or Bruckner. Abandoning the need to subordinate harmonic structures to a tonal hierarchy and to unify phrases with a single overarching tonic, but instead focusing on the types and logic of direct chord-to-chord relations (the so-called transformations), theorists such as David Lewin, Brian Hyer, David Kopp and Richard Cohn, among a number of others referenced throughout this book, managed to fill a significant gap in music analysis – the lack of satisfactory theory for the tonally transitional music of the late Romantic and early modern repertoires; music which could not be described as strictly tonal, but was at the same time based on the familiar consonant triads and seventh chords, which were already conventional harmonic blocks in the eighteenth and early nineteenth centuries. While defining the initial motivations for developing what is today widely recognizable as “neo-Riemannian theory and analysis” – those analytical threads and theoretical ideas derived from Hugo Riemann's highly influential Functional theory – we must admit that the “transformational” music-theoretical project nowadays far surpasses those nineteenth-century concepts such as functionality and harmonic dualism. Therefore, upon realizing how wide the variety of analytical methodologies and repertoires included in this volume is, we have decided to move away from the initially conceived “Neo-Riemannian analysis in practice” and instead title this book “Transformational analysis in practice”.

It can be claimed that the sequence of chapters in this collection loosely follows the chronological development of transformational theory (with neo-Riemannian analysis being a more suitable labelling for Part I) – moving from the chromatic tonal music of the nineteenth century towards the atonal music of the twentieth, then towards jazz and popular music. In view of this, a brief literature review tracing the development of the field from the 1980s onwards would not only be appropriate to integrate here, but it can also inform readers about the connections between ideas, methodologies and developments.
presented throughout this anthology. As an additional supplement for everyone researching in the field, the extensive bibliography, presented towards the end of the volume, serves to trace the chronology of research outputs in the broader field, having studies grouped on a decade-by-decade basis.

Hugo Riemann's extensive theoretical writings and especially those of the period 1877-90 (see final bibliography) laid the foundations of what we call functional harmony today, before gradually moving away from the strict rules of the common-practice functional tonality and towards integrating more chromatic, third-related and other supposedly less conventional harmonic relations into his theoretical model. It is precisely those later developments that have been taken on and recontextualized almost a century later by theorists such as David Lewin (1967, 1982, 1984, culminating in 1987), Richard Cohn (1988, consider especially his studies from 1996-98), Brian Hyer (1989, 1995), David Kopp (1995, 2002), Michael Kevin Mooney (1996), and Julian Hook (2002), to name a representative portion of the studies from the earlier years of neo-Riemannian theory, which gradually was getting replaced or becoming part of the more widely encompassing transformational theory.

As talking about chord or pitch proximity has been an essential part of Riemannian (and later neo-Riemannian) thinking, showing pitch relations in geometrical spaces such as the celebrated Tonnetz has been a most potent device for discussing harmony since Hostinský (1879). Geometrical representations of harmony have then been adapted and developed in multifaceted ways, from the familiar major-minor triadic Tonnetz as in Cohn (1998, “An Introduction to Neo-Riemannian Theory”), through more complex geometries for depicting relations between chords of more than three pitches, as in Douthett and Steinbach (1998) or Tymoczko (2006), to analyzing the atonal music of the twentieth century with adapted Tonnetze and other geometrical devices, as in Brown (1999) and Gollin (2000). The ability to represent harmony geometrically is what distinguishes transformational analysis from other, predominantly notation-based analytical systems. Bearing this in mind, it has been one of the primary motivations for the current project to put together a selection of visually appealing, and hence approachable and widely understandable analytical methodologies. We hope that analytical surveys, which are based on easily understandable and geometrically conceived figures and diagrams would have a wide readership and can motivate a growing integration of transformational theory into the undergraduate curriculums across music departments in English-speaking countries and beyond.

What distinguishes transformational from neo-Riemannian theoretical thinking is, perhaps to a largest extent, the development of a more abstract, mathematically-conceived way of discussing music, which started with David Lewin’s Generalized Musical Intervals and Transformations in 1987. This
approach has been continued by scholars such as Eytan Agmon (1989), Julian Hook (2002, 2011 and 2013) and Dmitri Tymoczko (2008, 2009 and 2011) and has arguably developed into the most prevalent thread in the field. Modeling musical transformations as elements of a mathematical group (basically applying group theory to music) has opened the doors for discussing all possible kinds of chords and chord or pitch relations, regardless of style, and hence transformational theory has become extremely flexible.\(^1\) Its extension to more dissonant and more complex sonorities, as well as to transformations between dyads, has led to the application of transformational methodologies to ever wider repertoires, including jazz, atonal music, as well as film music. The current volume presents a selection of analytical studies on jazz and post-tonal repertoires, the latter being represented by discussions of Webern, Copland, Vaughan Williams, Messiaen and Thomas Adès. There is a balance between more approachable, music-centered essays as in chapters 7 and 8, and more mathematically-rigorous surveys, as in chapters 9 and 10. For the latter, some background in mathematics would be beneficial to readers, while we believe that the discussion of musical examples can still be within everyone’s scope of understanding.

The more one delves into the theoretical and analytical landscapes as outlined crudely and perhaps overly succinctly above, the more one realizes that transformational music theories (supposedly more appropriate to be referred to in the plural) seem to have evolved piece-by-piece and continue to accommodate numerous semi-independent threads. This makes it possible for individual essays in the current anthology to situate themselves in numerous branches of the field, while chapters have been grouped into four distinct parts, based on the repertoires under discussion. Starting with the music which inspired the development of neo-Riemannian analytical thinking – the European Romantic music of the nineteenth century – essays proceed in a rough chronological order, firstly making a geographical excursion to art music from Brazil and Turkey, then returning to Europe for the atonal music of Anton Webern, before touching on other post-tonal composers, and, finally, acknowledging the suitability of transformational analysis to jazz and popular music.

\(^1\) Group theory is a mathematical framework that studies the properties and relationships of sets of elements, allowing for the exploration of symmetries, transformations, and patterns within a given system. In music theory, group theory is applied to analyze and understand chord progressions, pitch relations, and harmonic transformations across various musical styles.
While needing to admit that a book such as the one we have put together, cannot do full justice on all the important trends in the multifaceted field of transformational music theory that are simultaneously evolving today, we have striven to represent a wide variety of approaches to analysis – one that can be of interest to many musicology students, music practitioners, scholars in the field, and those who would like to broaden their understanding of music without limiting themselves to a particular style and epoch. As you delve into the forthcoming chapters, we encourage you to embrace the transformative power of music analysis and embark on a journey of discovery. Engage with the rich array of methodologies presented within these pages, explore the intricate landscapes of diverse musical styles, and let the essays inspire new perspectives and insights.
PAGES MISSING
FROM THIS FREE SAMPLE
Index

A
Ableton (software), xxvii, 302, 311-12, 315, 318
Adès, Thomas, 228, 237-9, 241
The Four Quarters, 237-9, 241
Agmon, Eytan, xxxi, 49, 63, 71, 127, 142, 322
Almada, Carlos, 116-17, 327
Alnar, Hasan Ferit, 99, 122, 129-31, 135
Eight pieces for piano, 122, 129
Amiot, Emmanuel, 148, 232, 240, 243
Andreatta, Moreno, 280, 284, 299, 327
Argentino, Joe, 200, 222, 327
Armstrong, Louis, 306, 319
augmented triads, 6, 16-17, 25, 30, 38

B
Bach, Johann Sebastian, 4, 34, 59, 63, 197, 252
Das Wohltemperierte Klavier, 4, 59
Baker, James, 45, 194-5, 197
Baker, Steven Scott, 198
Bass, Richard, 8, 21, 72, 324, 328
beat-class set theory, 147, 193, 199, 202
Beethoven, Ludwig van, 12, 54, 57, 63, 66, 71, 103, 142
Piano sonata, op. 28, 66
String quartet, op. 59, no. 1, 57
Symphony no. 2, 57
Violin sonata, op. 12, no. 1, 57
Violin sonata, op. 24, 12
Violin sonata, op. 30, no. 1, 54
Beyoncé, 305, 318
Bigo, Louis, 281, 299, 327
blues, 286, 288, 290-91, 294-5, 298
Bowie, David, 305, 319
Brahms, Johannes, 68-9, 103, 106-8, 118, 270
Ein Deutsches Requiem, 69
Violin Sonata, op. 78, 106-7
Brazilian music, xxxi, 99, 101-3
Brinkman, Alexander, 127, 142, 322
Brower, Candace, 71, 324
Brown, Matthew, 196, 222
Brown, Stephen, xxx, 147, 150-1, 162, 168, 181, 187, 190, 322
Bruckner, Anton, xxix, 54, 201, 224, 328
Bruno Mars, 305, 319
Burial (electronic musician), 305, 319

C
cadence, 10-12, 63, 66, 124, 130, 216, 221, 266, 267
Callender, Clifton, 18, 21, 78-9, 94, 200, 223, 229, 243, 250, 266, 276, 322, 324
Cannas, Sonia, 280, 284, 299, 327
Capellen, Georg, 63, 71
Caplin, William, 130, 142
Capuzzo, Guy, 247, 301-2, 305, 316, 318, 324
centricity, 125
chains (harmonic/chordal), 43, 170, 183, 185, 304
Chick Corea, 278, 300, 328
Childs, Adrian, 24, 45-6, 322, 327
Chopin, Frederic, 32, 199
chromaticism, 6, 24, 30, 196-7, 201, 253, 287
Clark, Suzannah, 198, 223
Cohen, Leonard, 305, 319
coherence, 6, 32, 171, 195
Cohn, Richard, xxix, xxx, 3, 6, 9-10, 16, 21, 24, 32, 40, 45, 49, 54, 62, 65, 71, 104, 107, 115, 117, 132, 137, 142, 151, 163, 166, 175, 190, 196, 200, 203, 223, 270, 274, 277, 286, 299, 310, 318, 322-5, 327
Colour Noise (band), 306, 319
Coltrane, John, 247, 252, 258, 266, 277-83, 287-300
combinatoriality, 138, 155, 202
common tones, 135, 203, 228, 311
compound triadic transformations, 40, 43
Cone, Edward T., 205, 223
consonance, 11, 35, 49, 62, 77, 196-7, 213, 287
consonant triads, xxix, 3, 16, 25, 33, 35, 44, 47, 49-50, 54, 62, 77-8, 82, 92, 105
Cook, Robert, 325
Copland, Aaron, xxxi, 147, 166, 191, 194, 205, 214-15, 218-20, 328
Passacaglia, 147, 194, 205, 214, 218-20
Cube Trio
4-Cube Trio, 32

D
Davis, Miles, 271-2, 278, 280, 300
DAW (Digital Audio Workstation), 248, 301, 308, 315, 317
Deadmau5 (electronic musician), 305, 319
Debussy, Claude, 19, 21, 60, 196-7, 199, 243
diminished seventh chords, 16, 25-6, 30, 33, 35-8, 44-5, 49, 51
discrete Fourier transform, 32, 228, 284
dissonance, 16, 32, 34, 45, 51, 176, 237, 287, 294
dissonant prolongation, 35, 39
Douthett, Jack, xxx, 3, 24, 46, 49, 71, 228, 243, 318, 323, 325, 328
drum and bass, 305
dualism. See Riemann and harmonic dualism

E
Engebretsen, Nora, 325
enharmonicism, 47-50, 66
Erkin, Ulvi Cemal, 99, 122, 138-40
Beş Damla for piano, 138-40

F
Fétis, François-Joseph, 39
figured bass, 48, 53-4, 255
film music, xxxi, 302, 305, 316
Fink (musician), 305, 319
Fleetwood Mac (band), 305, 319
Forrest, David, 305, 318
Foucault, Michel, 20, 22
Fourier phase spaces, 228, 231, 233, 238, 241-2
Franck, César, xxix, 64, 325
French augmented sixth chords, 32, 49
fugue, 59, 111
functional tonality, xxix, 4, 20, 24, 26, 28, 30, 40, 62, 66, 68, 197, 251, 253, 255, 262, 306
G

German augmented sixth chord, 10-11, 49
Givan, Benjamin, 280-1, 287, 299
Gollin, Edward, xxi, xxv, xxx, 24, 46, 76, 94, 147, 277, 300, 323, 325, 327

group improvisation, 280-2, 288, 298

group theory, xxxi, 78-9, 147

H

half-diminished seventh chords, 26, 44, 50, 324
Hancock, Herbie, 272, 275, 278, 305, 319, 327
harmonic series, 197-8
Harrison, Daniel, 4, 49-50, 71, 78, 94, 126, 142, 202, 223, 323, 325
Heetderks, David, 62, 72, 166, 191, 328
hexatonic cycle, 7-8, 10, 40, 104, 108, 222, 327
hexatonic poles, 3, 43, 54, 62
Hindemith, Paul, xxi, 4, 64, 203
 Ludus Tonalis, 4, 64
homophony, 176, 237
Hook, Julian, xxx, xxi, 3, 25, 46, 52, 72, 92, 94, 325, 328
Hostinský, Ottokar, xxx, 24, 46, 203, 321
Hyer, Brian, xxix, xxx, 24, 46, 78, 94, 322-3

J

Janelle Monáe, 306, 319

K

Kidd, Milan, 203, 223, 325

Kim, Yeajin, 194, 223, 328
Klumpenhouwer, Henry, 88, 92, 94, 175, 191, 323, 325-6
Kopp, David, xxix, xxx, 50, 58, 72, 323, 325
Kurth, Ernst, 49, 60, 65, 72, 224, 321-2

L

L transformation, 10, 107, 153
Lehman, Frank, 302, 311, 318, 328
Lerdahl, Fred, 195, 223, 322, 325
Levine, Mark, 256, 261, 263, 269, 277
Levy, Brian, 280-3, 288, 290-5, 298-9
Lewin, David, xxix-xxx, 3-4, 20, 22, 24, 46, 81, 83, 94, 147, 151, 163, 201-2, 223, 228, 243, 266, 277, 321-3, 326
Liszt, Franz, xxix, 3, 5-19, 21-7, 30-3, 35-6, 39-40, 44-6, 67, 102, 195, 322, 324, 327-8
 Années de pèlerinage, Year I, 67
 Bagatelle sans tonalité, 24, 35-9, 45, 327
 La lugubre gondola I, 24
 Nuages gris, 24, 35
 Polonaise I from St Stanislas oratorio, 39-42, 45
 R. W. - Venezia, 24
 Romance oublié, 26-7, 44
 Trauervorspiel und Trauermarsch, 31-2, 44
 Un Sospiro, 3, 5, 7, 13-14, 18-19, 21
 Valse oublié no. 1, 27-31, 44
 Via Crucis, 33-5, 44
Index

M
macroharmony, 247, 282, 286-7, 294
Mark, Gerald and Simons, Seymour, 66
Marra, James, 196, 223, 322
mathematics in music
theory/analysis, xxx-xxxi, 3-4, 25, 148
McClimon, Michael, 266, 277, 328
McCreless, Patrick, 196, 224, 322, 324
Messiaen, Olivier, 228, 233
Theme and Variations for Violin and Piano, 233
Metheny, Pat, 265, 306-10, 317, 319
Michaelsen, Garrett, 253, 272, 277, 280-1, 300
Mitchell, William, 196, 224, 321
Mooney, Michael Kevin, xxx, 324
Moore, Allan, 306, 318
Morgan, Robert, 35-6, 39, 46, 321
Morris, Robert, 266, 277, 324

N
neo-Hauptmannian
interpretation of chords, 76, 87
Nolan, Catherine, 175, 181, 191, 326
non-functional harmony, 24, 28-9, 39, 115, 199, 200, 247

O
octatonicism, xxvii, 3, 6-9, 11-12, 14-16, 18-21, 38, 99, 104-5, 107, 178, 233, 235, 238, 253, 269, 284, 286
octave equivalence, 197
Oettingen, Arthur von, 203, 321
omnibus progression, 117

P
Park, Joon, 250, 277, 328
parsimoniousness (in voice leading and/or chord transformations), 4, 6, 16, 43, 49-50, 55, 63, 103, 115, 153-4, 199, 268, 270-1, 291
Pearsall, Edward, 126, 143, 326
pentatonicism, 6, 9-10, 16, 18-20, 125-6, 138, 285-6, 289-91, 293
Pink Floyd, 306, 319
pitch-class set theory, 99, 194, 198-9, 201-2, 207, 225, 229
Pixies, The (band), 307, 318
Plotkin, Richard, 199, 224, 328
Police, The (band), 306, 319
post-tonal music/theory/analysis, xxiv-xxv, xxxi, 15, 33, 143, 145, 147, 149, 154, 166, 194-7, 199-200, 202, 204, 221
Proctor, Gregory, 58, 64, 72, 196, 224, 321
Prokofiev, Sergei, 65-6, 198-9, 201, 224
Romeo and Juliet, 66
Index

Q
Quinn, Ian, 78-9, 94, 228, 230, 243, 324

R
Rachmaninov, Sergei, 57
Prelude, op. 32, no. 7, 57
Radiohead, 306, 319
Ramirez, Miguel, 200, 224, 328
reduction, 15, 36, 39, 41, 115-16, 135, 147, 194-5, 205, 207-8, 215, 221, 242, 306
chordal, 135
harmonic, 15, 36, 39, 41, 116, 194, 204
Schenkerian, 39, 197, 199
Rehding, Alexander, 24, 46, 277, 300, 326-7
Rey, Cemal Reşit, 99, 120-4, 143
Scene Turques, 123-4
Riemann, Hugo
and chord/pitch proximity, xxx
and chromatic third chords, 12
and Functional theory, xxix-xxx, 23
and harmonic dualism, xxix, 7, 77
and L/P/R transformations, 7, 107
and pentatonicism, 125
and Tonnetz, 203
and Wechsels, 4, 77-8
Rifkin, Deborah, 198-9, 201, 224
Rings, Steven, 24, 46, 49, 72, 127-8, 143, 204, 224, 274, 277, 281, 300, 326, 328
Robinson, Porter (electronic musician), 305, 319
Roman numeral analysis, xxix, 23, 54
Rossini, Gioachino, 65, 103
Messe Solennelle, 65
Rothstein, William, 78, 87-8, 93-4, 103, 118, 326
Rui Da Silva (DJ), 305, 319
Rusch, René, 198-9, 224, 328
Russ, Michael, 49, 72, 326

S
S/W. See Schritte and Wechsels
Salzer, Felix, 58, 72, 194, 198, 224, 277
Santa, Matthew, 274, 278, 326
Santo and Johnny (duo), 305
Satyendra, Ramon, 9, 22, 40, 46, 132, 324-5
Saygun, Ahmed Adnan, 99, 122, 125-30, 134-6, 139, 141
Sonatina for piano, op. 15, 122, 134
Töresel Musiki (treatise), 122, 125-6
Schachter, Carl, 58, 72, 205, 224
Schenker, Heinrich, 57, 63, 72-3, 198-200, 222, 224, 277, 324
Schenkerian analysis, xxiv, xxvi, xxix, 23-4, 36, 39, 50, 71, 147, 193-202, 205, 222, 224, 325-6, 328
Schoenberg, Arnold, 54, 72, 94, 115, 118, 195-6, 198, 201-2, 222-3, 224, 252, 321, 323, 327
Schritte, 82-3
Schubert, Franz, 12, 14, 32, 46, 49, 57-9, 61, 66, 68-71, 103, 198-9, 223-4, 243, 323, 326, 328-9
An Laura D. 115, 61
Die Liebe hat gelogen D. 751, 68
Piano Sonata D. 850, 59
Piano Trio no. 2, D. 929, 70
Wanderer Fantasy, 57
Index

Shorter, Wayne, 250, 271-2, 277-8, 300, 326
Siciliano, Michael, 326
Skryabin, Alexander, 196, 201, 224-5
Smith, Charles, 196, 225, 322
Smith, Kenneth, 24, 46, 196, 200, 225, 328
Steinbach, Peter, xxx, 3, 24, 46, 49, 71, 228, 243, 323
Straus, Joseph, 150, 153, 155, 163, 195, 204, 274, 278
Strauss, Richard, 57, 68
Strunk, Steven, 247, 250, 263, 266, 277-9, 300, 324, 326, 328
subdominant, 8, 13, 26, 110
syntax, xxiii, 3, 6-7, 24, 196, 264, 279, 284, 286
alternative, 6, 21
double, 3, 6-7
hexatonic, 284, 286
tonal, 264, 279

T

Tagg, Philip, 304-5, 309, 318
Taruskin, Richard, 7-8, 14-15, 22
Tchaikovsky, Pyotr Illyich, 60
Symphony No. 5, mvt. I, 60
Tonnetz
 alternative/modified, 147, 150-1, 154
dyads-based, 4, 79
standard (major/minor triadic), xxx, 33, 148, 228, 242
three-dimensional, 94, 250, 275, 323
Tymoczko, Dmitri, xxx-xxxi, 24, 46, 50, 72, 78-9, 94-5, 128, 143, 166, 191, 200, 204, 225, 228, 234, 243, 247, 251-3, 278, 280, 282, 286-8, 300, 324, 326, 329

V

Vaughan Williams, Ralph, 147, 194, 205-7, 209-10, 212, 216
Violin Concerto in D minor, 147, 205, 207, 209-10, 212
voice exchanges, 4, 76-9, 85, 89, 90, 93-4

W

Wagner, Richard, xxix, 4, 24, 60, 62-5, 72, 78, 102, 117, 198-9, 222, 324
Das Rheingold, 62
Tristan Chord, 78, 94
Tristan und Isolde, 4, 49, 72, 78, 81-2, 85, 87-8, 90, 93-4, 321-2
Waters, Keith J., 247, 250, 256, 263, 266-9, 271, 273-6, 278-9, 284, 300, 327, 329
Webern, Anton, xxxi, 147, 149-51, 153-6, 160-3, 165-75, 178-9, 181-5, 187, 189-91, 197, 201-2, 222-3, 326
Concerto for Nine Instruments, op. 24, 147, 149-51, 167, 202
Variations for Orchestra, op. 30, 147, 165-6, 169-73, 189-91
Wechsels, 76-7, 83-4, 93
Weitzmann regions, 16, 33, 35, 44
Weitzmann, Carl Friedrich, 39, 327
Wild, Jon, 25, 46, 327
Williams, J. Kent, 250, 263, 266-8, 271, 273-6, 278, 329
Wolf, Hugo, 50-1, 61, 65, 68, 199, 224, 324

Y

Yust, Jason, 25, 32, 46, 148, 228-9, 231, 243, 280, 284, 300, 32