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Appendix B: Stochastic model solution
In this appendix we solve the stochastic version of the model. To

do this, we start by linearizing the model around its steady state.
Despite the simplicity of the structure of the proposed DSGE mo-
del, it is highly nonlinear, reflecting very complex relationships be-
tween different economic variables. This hampers their practical
application. To solve this problem, we resort to performing a linear
approximation to the equations of the model, which would allow us
to direct application to the data.

The log-linearization of the model consists in expressing the vari-
ables as log-linear deviations with respect to their steady state val-
ues. The log-linear deviation of a variable u around its steady state,
u, is denoted as û, where ût = lnut − lnu. That is

ut = ue ût ≈ u(1+ ût )

In constructing the log-linear deviations we follow two basic rules
(Uhlig, 1999). First, for the case of two variables ut and zt , we have:

ut zt ≈ u(1+ ût )z(1+ ẑt ) ≈ uz(1+ ût + ẑt )

that is, we assume that the product of the two deviations, i.e., ût ẑt ,
is approximately equal to zero, as they are small numbers. Second,
we assume the following approximation:

ua
t ≈ ua(1+ ût )a ≈ ua(1+aût )

Taking into account the above definitions, we can proceed to the
log-linearization of our model. We start from the production func-
tion:

Yt = At Kα
t L1−α

t

In steady state, the production function can be written as:

Y = AK
α

L
1−α

Therefore, using the above basic rules, we can write:

Y (1+ ŷt ) = AK
α

L
1−α

(1+ ât +αk̂t + (1−α)l̂t )

Substituting, we obtain the log-linear equation for the production
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function:

ŷt = ât +αk̂t + (1−α)l̂t (A.1)

This procedure must be applied to the other equations of the mo-
del. For instance, the second equation we consider is:

Ct = Yt − It

By calculating the deviation with respect to the steady state we ob-
tain:

ĉt = Y

C
ŷt − I

C
ît

Substituting the steady state values in the feasibility condition of
the economy, we obtain:[

1−β+ (1−α)βδ
]

ĉt = (1−β+βδ)ŷt −αβδît (A.2)

The log-linear version of the capital stock accumulation equation
is given by:

k̂t+1 = (1−δ)k̂t +δît (A.3)

Next equation of the model is the following:

1−γ
γ

Ct

1−Lt
= (1−α)

Yt

Lt

and after the necessary transformation we obtain:

(1−γ)C L = γ(1−α)Y (1−L)

Again, substituting the steady state values previously computed,
we obtain the following expression:[

1+ γ(1−α)

(1−γ)

1−β+βδ
1−β+ (1−α)βδ

]
l̂t = ŷt − ĉt (A.4)

The next equation is:

Et Ct+1

Ct
= Etβ

[
1+

(
α

Yt+1

Kt+1
−δ

)]
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and applying the same procedure, we obtain the following expres-
sion:

Et ĉt+1 − ĉt =
(
1−β+βδ)

Et ŷt+1 −
(
1−β+βδ)

Et k̂t+1 (A.5)

Finally, given our assumption that the TFP follows an AR(1) pro-
cess, the log-deviation with respect to the steady state is given by:

ât = ρât−1 +εt (A.6)

Once we have the model in log-linear form, we can proceed with
its resolution, although we have to bear in mind that this is an ap-
proximation of the original highly nonlinear model. The literature
had proposed different alternative methods to solve a DSGE model.
These methods are the proposed by Blanchard and Kahn (1980),
Uhlig (1999), Sims (2001) and Klein (2000). Here, we use the pro-
cedure developed by Blanchard and Kahn (1980). We follow Ireland
(2004) in applying Blanchard-Kahn method. We start by defining
the following two vectors of deviations from the steady state:

x0
t =

 ŷt

ît

l̂t

 (A.7)

s0
t =

[
k̂t
ĉt

]
(A.8)

where the first vector comprises deviations in production, invest-
ment, and employment from their steady state valuesand the sec-
ond vector is formed by the deviations of the capital stock and con-
sumption, the variables for which we have not only its current value
but also future value.

First, we can write the following system:

Ax0
t = B s0

t +C ât (A.9)

consisting of the following three equations:

ŷt − (1−α)l̂t = ât +αk̂t

(1−β+βδ)ŷt −αβδît =
[
1−β+ (1−α)βδ

]
ĉt
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ŷt −
[

1+ γ(1−α)

(1−γ)

1−β+βδ
1−β+ (1−α)βδ

]
l̂t = ĉt

To simplify notation, we define the following three parameters:

θ = 1−β+βδ

φ= 1−β+ (1−α)βδ

η= 1+ γ(1−α)

(1−γ)

θ

φ

and where the constant matrices are given by:

A =
 1 0 α−1
θ φ−θ 0
1 0 −η



B =
 α 0

0 φ
0 1



C =
 1

0
0


We also define the following system in terms of the expected future

value of the variables in the model:

DEt s0
t+1 +F Et x0

t+1 =Gs0
t +H x0

t (A.10)

consisting in the following two equations:(
1−β+βδ)

Et k̂t+1 +Et ĉt+1 −
(
1−β+βδ)

Et ŷt+1 = ĉt

k̂t+1 = (1−δ)k̂t +δît

where the matrices as given by:

D =
[
θ 1
1 0

]
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F =
[ −θ 0 0

0 0 0

]

G =
[

1 0
0 1−δ

]

H =
[

0 0 0
0 δ 0

]
Finally, the matrix model is closed by incorporating the expected

deviation of total factor productivity:

Et ât+ j = ρ j
A ât

The system (A.9) can be written as:

x0
t = A−1B s0

t + A−1C ât

Taking one period ahead, the above system should be:

Et x0
t+1 = A−1BEt s0

t+1 + A−1CρA ât

Substituting in the system (A.10) we find that:

(D +F A−1B)Et s0
t+1 = (G +H A−1B)s0

t + (H A−1C −F A−1CρA)ât

Solving for the matrices, the final system would be:

Et s0
t+1 = J s0

t +M ât

where:

J = (D +F A−1B)−1(G +H A−1B)

M = (D +F A−1B)−1(H A−1C −F A−1CρA)

Using the Jordan decomposition, the matrix J can be decomposed
such as:

J =O−1NO
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where:

N =
[

N11 0
0 N22

]
and where:

O =
[

O11 O12
O21 O22

]
Notice that the elements of the diagonal of N are the eigenval-

ues of the matrix J . In order the solution to be unique, the value
of N11 must be inside the unit circle and the value of N22 outside
the unit circle. This is the so-called the Blanchard-Kahn rank con-
dition. If the rank condition does not hold, then the equilibrium is
not unique. The columns of O−1 are the eigenvectors of the matrix
J . Therefore, the system can be written as:

Et s0
t+1 =

[
O11 O12
O21 O22

]−1 [
N11 0

0 N22

][
O11 O12
O21 O22

]
s0

t +
[

M11
M21

]
ât

[
O11 O12
O21 O22

]
Et s0

t+1 =
[

N11 0
0 N22

][
O11 O12
O21 O22

]
s0

t

+
[

O11 O12
O21 O22

][
M11
M21

]
ât

Alternatively, we write the following expectations:

Et s1
1,t+1 = N11s1

1,t +Q11ât

Et s1
2,t+1 = N22s1

2,t +Q21ât

where:

s1
1,t =O11k̂t +O12ĉt

s1
2,t =O21k̂t +O22ĉt

and where:
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Q =
[

Q11
Q21

]
=OM

Given that the value of N22 is outside the unit circle, we can solve
s1

2,t ahead:

s1
2,t =

1

N22
Et s1

2,t+1 −
Q21

N22
ât

resulting:

s1
2,t = −Q21

N22

∞∑
j=0

(
1

N22

) j

Et ât+ j

= −Q21

N22

∞∑
j=0

(
ρA

N22

) j

ât = Q21

ρA −N22
ât

Solving for ĉt we obtain:

Q21

ρA −N22
ât =O21k̂t +O22ĉt

Thus, the log-deviation of consumption is:

ĉt =−O21

O22
k̂t + Q21

O22(ρA −N22)
ât

or alternatively:

ĉt = S1k̂t +S2ât

being

S1 =−O21

O22

S2 = Q21

O22(ρA −N22)

In the case of the vector s1
1,t we find that:

s1
1,t = (O11 +O12S1)k̂t +O12S2ĉt

and substituting we obtain:
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Et s1
1,t+1 = N11s1

1,t +Q11ât

Et s1
1,t+1 = N11

[
(O11 +O12S1)k̂t +O12S2ĉt

]+Q11ât

(O11 +O12S1)k̂t+1 = N11(O11 +O12S1)k̂t + (Q11 +O12S2(1−ρA))ât

or alternatively:

k̂t+1 = S3k̂t +S4ât

where:

S3 = N11

S4 = Q11 +N11O12S2 −O12S2ρA

O11 +O12S1

Finally, returning to the initial system:

x0
t = A−1B s0

t + A−1C ât

x0
t = A−1B

[
k̂t
ĉt

]
+ A−1C ât

x0
t = A−1B

[
1

S1

]
k̂t +

[
A−1C + A−1B

[
0

S2

]]
ât

or:

x0
t = S5s0

t +S6ât

where:

S5 = A−1B

[
1

S1

]

S6 = A−1C + A−1B

[
0

S2

]
Having completed all these computations, the solution of the mo-

del can be obtained. Collecting terms, the solution of the model is



The Canonical Dynamic General Equilibrium model 61

given by:[
k̂t+1
ât+1

]
=

[
S3 S4
0 ρA

][
k̂t
ât

]
+

[
0
1

][
ε1,t+1
ε2,t+1

]
and 

ŷt

ît

l̂t
ĉt

=
[

S5 S6
S1 S2

][
k̂t
ât

]

that is, the solution implies that the vector of log-deviation of con-
trol variables is a function of the vector of the state variables, and
where the matrices S5 and S6 are function on the parameters of the
model (α, β, γ, δ, ρA , σA). Therefore, the resolution of the mo-
del involves the calibration or estimation of the above matrices, i.e.,
the structural parameters of the model, linking the dynamic of the
control variables with the state variables, where the state variables
follow an autoregressive vector of order 1. Given the process for the
state variables, we can predict its future value, so using the latter
system, we can obtain projections for the future value of control
variables.

Given the calibrated parameter values, the specific solution for our
model would be:

A =
 1.0000 0.0000 −0.6500

0.0882 −0.0204 0.0000
1.0000 0.0000 −1.5635



B =
 0.35 0

0 0.0678
0 1



C =
 1

0
0


D =

[
0.0882 1

1 0

]

F =
[ −0.0882 0 0

0 0 0

]
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G =
[

0 1
0.94 0

]

H =
[

0 0 0
0 0.06 0

]
Given the above matrices, we can proceed to define the following

two matrices J and M :

J =
[

1.0956 −0.3847
−0.0365 0.9537

]

M =
[

0.4447
0.1201

]
Applying the Jordan decomposition to matrix J , we obtain:

O =
[

0.1320 0.7570
−0.1320 0.2430

]

N =
[

0.8866 0
0 1.1627

]
being

Q =
[

0.1497
−0.0295

]
Finally, we can compute:

S1 = 0.5433

S2 = 0.5709

S3 = 0.8866

S4 = 0.2251

S5 =
 0.2124

−0.8893
−0.2116


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S6 =
 1.3054

3.7513
0.4698


Therefore, the solution of the model is given by the following two

systems of equations:

[
k̂t+1
ât+1

]
=

[
0.8866 0.2251

0 0.9500

][
k̂t
ât

]
+

[
0
1

][
ε1,t+1
ε2,t+1

]
and 

ŷt

ît

l̂t
ĉt

=


0.2124 1.3054

−0.8893 3.7513
−0.2116 0.4698

0.5433 0.5709

[
k̂t
ât

]


